Cloning, up-regulation, and mitogenic role of porcine P2Y2 receptor in coronary artery smooth muscle cells.
نویسندگان
چکیده
Previous work has shown up-regulation of a UTP-sensitive P2Y receptor in porcine coronary smooth muscle cells (CSMC) of organ-cultured arteries. However, the molecular identity and functional role of this putative receptor remained undefined. Here we report the cloning of the cDNA for this receptor that encodes an open reading frame for a protein of 373 amino acids with the highest homology to the human P2Y(2) receptor (84%). Heterologous expression of this receptor in 1321N1 cells revealed a novel pharmacology in that UTP and ITP were full agonists and UTP was more potent and efficacious than ATP for increasing intracellular [Ca(2+)] and extracellular signal-regulated kinase phosphorylation. Stimulation of subcultured CSMC with UTP, ITP, or ATP induced a concentration-dependent increase in cellular DNA content, protein synthesis, cell number, and proliferating cell nuclear antigen expression, indicating a mitogenic role for P2Y(2) receptors. This was supported by the finding that the treatment of CSMC with antisense oligonucleotides to the cloned cDNA sequence significantly inhibited UTP- and ATP-induced DNA and protein synthesis. In addition, reverse transcription-polymerase chain reaction analysis showed that P2Y(2) receptor mRNA was dramatically increased in cells of organ-cultured arteries compared with freshly harvested arteries, whereas the P2Y(6) receptor mRNA level was unchanged, and the P2Y(4) receptor mRNA was undetectable. This P2Y(2) subtype-specific up-regulation was confirmed in cells of coronary arteries stented in vivo. In conclusion, we have cloned the porcine P2Y(2) receptor with novel pharmacology and demonstrated that this receptor is up-regulated in CSMC of in vitro organ cultures or in vivo stented coronary arteries to mediate the mitogenic effects of nucleotides.
منابع مشابه
Novel mitogenic effect of adenosine on coronary artery smooth muscle cells: role for the A1 adenosine receptor.
Adenosine is a vascular endothelial cell mitogen, but anti-mitogenic for aortic smooth muscle cells and fibroblasts when acting via the A2B adenosine receptor. However, we show that adenosine increases porcine coronary artery smooth muscle cell (CASMC) number, cellular DNA content, protein synthesis, and PCNA staining. RT-PCR analysis indicates that porcine CASMC express A1, A2A, A3, and barely...
متن کاملEffects of human peptide endothelin-1 and two of its sterically unrestrained C-terminal fragments on coronaryvascular smooth muscle.
UNLABELLED Clearance of human peptide endothelin-1 (ET-1) has been proposed to follow a receptor pathway involving a cascade of ET-1 receptor endocytosis and lysosomal degradation by a family of proteinases expressed constitutively by most cells. Genetically distinct endopeptidases produce ET-1 and degrade mature peptide. The ET-1 degradation products were considered to be inactive, however, re...
متن کاملStress and Atherogenesis: Smooth Muscle Cell Mitogenic Activity and other Biochemical Changes Associated with Sera of \"Stressed\" Subjects
The proliferation of smooth muscle cells in the arterial wall (VSMC) is considered to play a key role in the development of atherosclerosis. To investigate the possible contribution of "stress" (experimentally-induced) to this process, blood from healthy volunteers, ages 21 to 65, screened to exclude major risk factors for coronary heart disease, was assayed for mitogenic activity after the sub...
متن کاملShort-term local delivery of an inhibitor of Ras farnesyltransferase prevents neointima formation in vivo after porcine coronary balloon angioplasty.
BACKGROUND Mitogenic stimuli present at the site of coronary arterial balloon injury contribute to the progression and development of a restenotic lesion, many signaling through a common pathway involving the small G protein p21(ras). Our aim was to demonstrate in biochemical studies that farnesyl protein transferase inhibitor III (FPTIII) is an inhibitor of p21(ras) processing and that when it...
متن کاملIncreased mitogenic and decreased contractile P2 receptors in smooth muscle cells by shear stress in human vessels with intact endothelium.
OBJECTIVE We investigated the role of shear stress in regulating P2 receptors in human umbilical vein. METHODS AND RESULTS Using a novel, computerized, biomechanical perfusion model, parallel vessel segments were randomized to simultaneous perfusion under high (25 dyn/cm2) or low (<4 dyn/cm2) shear stress at identical mean perfusion pressure (20 mm Hg) for 6 hours. In the endothelium, no sign...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 66 5 شماره
صفحات -
تاریخ انتشار 2004